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A shallow fluid-filled cavity with a longitudinal applied temperature gradient is
subjected to spanwise accelerations (g-jitter) representing the space-based microgravity
environment. A simplified slot model is introduced to describe the buoyancy-driven
flow and advected temperature fields produced in the cavity. Numerical solutions
indicate that boundary layer behaviour can manifest itself in the limit of strong
g-jitter (large Rayleigh number Ra). However, boundary layer thicknesses do not
obey the conventional Ra−1/4 scaling that typically arises in free thermal convection
problems. This anomalous scaling results from the three-dimensional complexity of
the flow and advected temperature fields, which are not themselves produced by a
single fixed applied temperature change. Three different regimes are identified at large
Rayleigh number characterized by the shapes of the advected temperature profiles.
These regimes are selected according to the values of the Biot number Bi and an
aspect ratio parameter. Simple models are presented of the boundary layer behaviour
which reproduce, in each regime, the numerically predicted scalings for boundary layer
thickness and advected temperature. These models give a succinct overall picture of
the slot behaviour in the buoyancy-dominated limit.

1. Introduction
The launch of the International Space Station in 1998† suggests that engineers of the

future may be routinely processing materials in space. This possibility has presented
the scientific challenge to understand better the space-based microgravity environment
(Alexander 1990; Nelson 1991; Thomson, Drolet & Viñals 1996; Alexander et al.
1996). Orbiting spacecraft are subject to residual accelerations, called g-jitter, which
are generally time dependent (periodic or random or a mixture of both), and which
can act in various directions. The fluid mechanicist can contribute to the scientific
discussion, since g-jitter produces novel fluid motions, e.g. in processing a crystal melt,
which would not occur in the fixed-gravity environment of Earth (Gresho & Sani
1970; Kamotani, Prasad & Ostrach 1981; Ostrach 1982; Gershuni & Zhukhovitskiy
1986; Gershuni et al. 1989; Wadih & Roux 1988; Biringen & Danabasoglu 1989, 1990;
Biringen & Peltier 1990; Shen et al. 1990; Neitzel et al. 1991, 1993; Thévenard & Ben
Hadid 1991; Saunders et al. 1992; Farooq & Homsy 1994; Kondos & Subramanian
1996; Lizée & Alexander 1997; Suresh, Christov & Homsy 1999).

† See http://spaceflight.nasa.gov/station/assembly for information on the status of the Interna-
tional Space Station project.
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One class of models which rewards study fruitfully is that of so-called slot models
(Elder 1965; Gill 1966; Gill & Davey 1969; Gill & Kirkham 1970; Bergholz 1978;
Sen & Davis 1982; Smith & Davis 1983a, b; Farooq & Homsy 1996; Grassia &
Homsy 1998a). It is a feature of such models that the geometry of the fluid system is
idealized, typically by considering a fluid layer of infinite extent in two directions, but
of finite depth in the third. This geometric simplification can make slot models both
simple and fast to handle numerically: indeed sometimes they are even analytically
tractable. In spite of the simple geometry, all the key fluid physics one might hope to
describe (inertia, buoyancy, viscosity, thermal conduction and convection) is retained.
Thus one can focus clearly on the physics without being concerned that an effect one
observes might be solely dependent on some geometric peculiarity.

Most slot models to date have been confined to two-dimensional flow fields.
However a recent study has extended this class of models to three dimensions
(Grassia & Homsy 1998b, c). The problem considered was a shallow fluid layer with a
uniform temperature gradient applied along its length, and with g-jitter also imposed
along the layer, but perpendicular to the applied temperature gradient, i.e. the applied
jitter was spanwise. Buoyant forces produced a circulation, ultimately leading to a
three-dimensional pattern of flow and advected temperature fields. These fields had
well-identified structure in both directions along the fluid layer, but the challenge was
to determine their quite complicated variation across the layer. This calculation was
only tackled in the limit of weak applied jitter (low Rayleigh number Ra) where a
perturbation expansion could be used.

The purpose of the present paper is to extend the results of Grassia & Homsy
(1998b, c) to the case of finite-amplitude jitter. Numerical techniques must be used.
However, a purely numerical study is not our sole objective here. We also want to
extract the asymptotic behaviour of the slot model in the limit of large Rayleigh
number Ra. It is well-known in fluid mechanics problems involving some dimen-
sionless parameter, such as Reynolds, Péclet or Rayleigh numbers, that when the
governing dimensionless parameter becomes large, boundary layer behaviour is ob-
served (Batchelor 1967; Leal 1992). The boundary layer thickness scales as a power
law function of the governing dimensionless parameter, and the exponent of the
power law characterizes the particular type of boundary layer. Knowing these layer
thicknesses is of more than academic interest, since they indicate where and how
much one needs to refine a numerical mesh when solving a real problem in a complex
geometry.

In free convection problems, layer thicknesses which scale like Ra−1/4 are commonly
found (Farooq & Homsy 1994; Elder 1965; Gill 1966; Gill & Davey 1969; Bergholz
1978; Farooq & Homsy 1996; Grassia & Homsy 1998b, c). However, this scaling
applies to layers produced in response to a known imposed temperature difference.
This is not the case for the three-dimensional slot model that we propose to study
here. Instead there are multiple flow and advected temperature fields to be considered.
One component of the flow may produce an advected temperature, which may in
turn produce further components of both the flow and temperature fields. Thus the
temperature change is coupled to the flow, not imposed from without. As we shall
see, it is quite a challenge to extract the correct boundary layer behaviour from the
governing equations. Nonetheless it is a worthwhile task, because it produces a simple
picture of the slot behaviour in the buoyancy-dominated limit.

The structure of the paper is as follows. In the next section we introduce the slot
model and its governing equations. Then we present the numerical solutions over
a range of parameter values. Next we tackle the models for the boundary layer
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Figure 1. A shallow cavity of unit depth has a unit temperature gradient applied along its length and
is subjected to low-frequency, spanwise jitter characterized by an instantaneous Rayleigh number
Raz . A circulation is established which advects heat, producing spanwise as well as lengthwise
temperature gradients.

behaviour of the slot in the large Rayleigh number Ra limit. Finally we discuss the
numerical results in the light of the boundary layer model and offer conclusions. A
far more detailed discussion of the work that we present can be found in Richardson
(1999).

2. The buoyant slot
The physical problem to be considered and the associated governing equations

have already been developed in the literature (Grassia & Homsy 1998b, c). We shall
review the rudiments of the development here. We adopt a dimensionless formulation
throughout: the relation between this dimensionless notation and its dimensional
counterpart is explained in the Appendix.

A shallow cavity of unit depth (see figure 1) is oriented along the y-axis of an
xyz coordinate system with the origin located at the centre of the cavity’s base. The
cavity is filled with a fluid of Prandtl number Pr, and a unit temperature gradient
is applied along it (x-direction). Thermal buoyancy forces are present. Spanwise (z-
direction) g-jitter is applied. As in previous studies (Grassia & Homsy 1998a, b, c) this
is assumed to be at low frequency (quasi-static), so that we are only concerned with
the instantaneous value of the applied acceleration: this is conveniently represented
by a (spanwise) Rayleigh number Raz .

The base of the cavity y = 0 is assumed to be thermally insulated, and no-fluid-
penetration and no-slip conditions apply there. The top surface of the fluid at y = 1
can exchange heat with the outside environment (heat transfer coefficient represented
by a Biot number Bi). This surface is also assumed to remain flat (valid if surface
tension forces are strong enough) and it cannot support tangential stresses (Marangoni
forces are ignored).

As is explained elsewhere (Grassia & Homsy 1998b, c) the temperature gradient
and applied acceleration couple to produce vertical vorticity and hence a circulation
flow around the cavity. However, this flow does not exist in isolation: it also advects
temperature, leading thereby to more vorticity production and additional flows. A
complicated three-dimensional pattern of flow and temperature fields results. While
it is feasible to compute numerically these fields for particular parameter values, e.g.
by adopting numerical techniques recently deployed for related problems (Or & Kelly
1998; Chen & Chen 1999; Christov & Homsy 2001; Skarda 2001), our objective is to
replace the true shallow cavity by a geometrically simpler slot model. This will lead
to a more mathematically tractable system, enabling a comprehensive investigation
of parameter space.
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The governing continuity, momentum and thermal equations in the quasi-static
limit are

∇ · u = 0, (2.1)

1

Pr
(u · ∇)u = −∇p+ ∇2u+ RazezT , (2.2)

u · ∇T = ∇2T , (2.3)

where ez is the unit vector in the z-direction, and we have adopted the sign convention
(Grassia & Homsy 1998a, b) that positive Raz corresponds to effective gravity in the
negative ez-direction. The boundary conditions (defining temperature to be the sum
of an applied field and an advected part arising due to the flow, T ≡ −x+ Tadvected)
are

u = Tadvected
,y = 0 at y = 0, (2.4)

u,y = v = w,y = Tadvected
,y + BiT advected = 0 at y = 1. (2.5)

The environment above the slot is assumed to be held at the value of the applied
temperature field, so that the advected field alone determines heat transfer at the top
boundary.

2.1. Local solution in a central fluid patch

The general solutions of equations (2.1)–(2.5) are complicated fully three-dimensional
functions. For a shallow fluid-filled cavity, we propose a so-called local solution,
which has an assumed simple functional form in the x- and z-directions, but makes no
assumptions across the y-direction. Such a local solution constitutes our slot analogue
of the true cavity. It makes no attempt to satisfy lateral boundary conditions, and
hence can only be valid over a small fraction of the length and breadth of the actual
cavity: this may nonetheless still correspond to many times the cavity depth in view
of the shallowness assumption. The physical interpretation is that we are looking at
a central patch of fluid located in the neighbourhood of x = z = 0. Employing the
notation used by other studies (Grassia & Homsy 1998c, a; Richardson 1999), we
propose for velocity components u, v and w, pressure p and advected temperature
Tadvected

u ≈ xu10(y) + zu01(y), (2.6)

v ≈ v00(y), (2.7)

w ≈ xw10(y) + zw01(y), (2.8)

p ≈ p00(y) + 1
2
x2p20 + 1

2
z2p02 + xzp11, (2.9)

Tadvected ≈ xT10(y) + zT01(y). (2.10)

Equations (2.6) and (2.8) have simple, i.e. linear, dependence in x and z, compatible
with the (reflectional) symmetries of equations (2.1)–(2.5). The velocity fields zu01(y)
and xw10(y) represent circulations about the central point of the slot, whereas xu10(y)
and zw01(y) represent inflows toward or outflows away from the centre. Meanwhile
v00(y) corresponds to the vertical funnelling of fluid: the lack of any x or z dependence
here is dictated by equation (2.1). The pressure field must have the form shown in
equation (2.9) to enable it to have gradients in all the necessary directions. It should
be noted that p20, p02 and p11 are constants, independent of y. The term involving p20

appears in the x momentum equation, that involving p02 appears in the z momentum



A local nonlinear solution in thermoconvective flows 347

equation, whereas the p11 term appears in both equations, and couples them. The
function p00(y) is required only to balance the y momentum equation: it turns out to
have no dynamical significance (Grassia & Homsy 1998b, c; Richardson 1999). For
the advected temperature in equation (2.10) there is again a simple linear dependence
in x and z, consistent with the symmetries of equations (2.1)–(2.5). The fields xT10(y)
and zT01(y) respectively modify the lengthwise temperature gradient, and introduce
spanwise gradients.

What we shall typically find is that the lengthwise-varying part xT10(y) of the
advected temperature tends to oppose the applied field, and at large Raz nearly
cancels it: the total gradient (applied plus convected) is therefore small. The physical
implication for a true shallow cavity, with a fixed temperature difference say applied
across its length between two sidewalls, is as follows. Recall that the local solution
models the shallow cavity near its centre and far from any sidewalls. Thus for a
real shallow cavity, any large total lengthwise temperature gradients will be confined
near the sidewalls. Analogous behaviour is seen at large Rayleigh number in a
much simpler (two-dimensional) convective flow problem, i.e. a temperature difference
applied horizontally across the thickness of a vertically aligned slot, with vertical
gravity: the effect of convection is to confine large total horizontal temperature
gradients to the sidewalls (Elder 1965; Gill 1966; Gill & Davey 1969; Bergholz 1978;
Farooq & Homsy 1994, 1996).

Before proceeding with our local solution, we shall take the limit Pr → ∞, which
will apply throughout the remainder of the paper. This serves to reduce the size of
the parameter space which the local solutions must explore. When Pr → ∞, we are
considering buoyancy-dominated, viscous-limited flows, but not how such flows are
modified by inertia (see equation (2.2)). Earlier studies have found that solutions (at
least for small Raz) were extremely insensitive to Prandtl number, in the sense that
Pr →∞ and Pr = 1 results were virtually identical (Grassia & Homsy 1998b, c). Some
crystallization problems, e.g. involving molten metals, do however exhibit Prandtl
numbers much smaller than unity (Braunsfurth & Mullin 1996; Braunsfurth et al.
1997): neglect of inertia may be invalid in such cases.

2.2. Governing equations for the local solution

We can now supply the equations governing the slot behaviour. We shall see that
these need to be supplemented by a number of closure relations, which we shall
discuss briefly. The latter relations determine the extent that the central fluid patch
described by the local solution exchanges mass with the rest of the cavity.

If equations (2.6)–(2.10) are substituted into (2.1)–(2.5) with Pr → ∞, and then
terms with corresponding powers of x and z are collected, we obtain

u10 + v00,y + w01 = 0, (2.11)

0 = −p20 + u10,yy, (2.12)

0 = −p11 + u01,yy, (2.13)

0 = −p11 + w10,yy + Raz(T10 − 1), (2.14)

0 = −p02 + w01,yy + RazT01, (2.15)

u10(T10 − 1) + v00T10,y + w10T01 = T10,yy, (2.16)

u01(T10 − 1) + v00T01,y + w01T01 = T01,yy, (2.17)
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along with boundary conditions

u10 = u01 = v00 = w10 = w01 = T10,y = T01,y = 0 at y = 0, (2.18)

u10,y = u01,y = w10,y = w01,y

= T10,y + BiT10 = T01,y + BiT01 = 0 at y = 1. (2.19)

In the above, (2.11) is a continuity equation, equations (2.12)–(2.13) represent
x momentum, equations (2.14)–(2.15) represent z momentum, and (2.16)–(2.17) are
thermal equations. Note that the y momentum equation is not reported here since
it has no dynamical significance (Grassia & Homsy 1998b, c; Richardson 1999).
Likewise note that in boundary conditions (2.18)–(2.19) only one condition on vertical
velocity is needed (Grassia & Homsy 1998b, c), as we would expect for first-order
equation (2.11).

Equations (2.11)–(2.19) are supplemented by the following closure relations. For
the circulation part of the flow given by zu01(y) and xw10(y), we define, as in previous
work (Grassia & Homsy 1998b, c), a parameter Azx which represents the spanwise-
to-lengthwise aspect ratio of the central fluid patch. We assume that none of the
circulation flow will leak out of the patch into the surroundings. In other words we
assume that the depth-averaged circulation flux crossing the lengthwise axis between
the central point and some arbitrary x matches that crossing the spanwise axis
between the central point and z = Azxx. This implies∫ 1

0

w10 dy + A2
zx

∫ 1

0

u01 dy = 0. (2.20)

Thus Azx becomes a key parameter in the model: it can be thought of as the
spanwise-to-lengthwise wavelength ratio for the slot flow and temperature fields.

Closure assumptions for the inflow–outflow components of the velocity field xu10(y)
and zw01(y), suppose that, in the depth average, there is no net pumping of fluid in
from one direction (e.g. along the x-axis), and no net pumping out in the transverse
direction (e.g. along the z-axis). Hence∫ 1

0

u10 dy =

∫ 1

0

w01 dy = 0, (2.21)

meaning that both u10 and w01 are so-called return flows (Sen & Davis 1982; Smith
& Davis 1983a).

We emphasize that the integral conditions (2.20)–(2.21) are nothing more than
plausible closure assumptions, and unless they are approximately valid for a real
shallow cavity, the three-dimensional slot model we propose will be of little practical
use. Indeed, for a true shallow cavity, the most appropriate value of Azx to use within
the slot model could well depend on the other parameters of equations (2.11)–(2.19),
namely Raz and Bi, in addition to the actual physical cavity aspect ratio.

In spite of this difficulty, we believe that there is still value in studying the proposed
slot model. The mathematical simplicity of the model means that it can be solved
very rapidly on a computer, compared with a full three-dimensional simulation. Only
ordinary, as opposed to partial, differential equations need to be solved. We can
therefore quickly identify interesting regions of parameter space, which (as suggested
earlier) can in principle be further investigated via a full simulation. Bearing in mind
the comparatively large set of parameters influencing the system (Raz , Bi and Azx)
this represents a significant advantage. In the subsection that follows we give details
of the numerical algorithm used to implement the model.
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2.3. Numerical implementation

Equations (2.11)–(2.21) were solved with a shooting method. At each step nine
unknowns needed to be guessed: six lower boundary conditions u10,y(0), u01,y(0),
w10,y(0), w01,y(0), T10(0) and T01(0), and three pressures p20, p02 and p11. In practice
two of these nine guesses were known in advance since the constant p20 and the
function u10(y) always vanish in the Pr → ∞ limit that we consider. With these
guesses, differential equations (2.11)–(2.17) were solved via a fourth-order Runge–
Kutta method (a uniform mesh of 200 points was found to be adequate here). It
was then determined by how much the nine equations represented by (2.19)–(2.21)
were violated (the integrals being computed by Simpson’s rule). New guesses at the
lower boundary and for the pressures were then obtained via the Newton–Raphson
technique, and this procedure was repeated until equations (2.19)–(2.21) were satisfied
within some specified tolerance. This tolerance varied between 10−6 and 2× 10−4

according to the choice of other parameter values.
The Newton–Raphson technique requires the computation of a Jacobian matrix at

each step. We obtained this by performing a regular perturbation expansion on the
governing differential equations, i.e. we solved the linearized equations corresponding
to the cases where the guessed lower boundary conditions or the pressures were
subjected to arbitrarily small changes. Thus each Newton–Raphson step requires
one Runge–Kutta integration of the nonlinear equations, followed by nine separate
integrations of the linearized ones.

Convergence of the Newton–Raphson technique relies on good initial guesses of
lower boundary conditions and pressures. This was achieved by employing known
analytic forms of the solutions valid in the small-Raz limit which have been reported
in the literature (Grassia & Homsy 1998b). These asymptotic analytic forms were
also useful for checking that the computer program was running correctly. They
were adequate starting points to ensure Newton–Raphson convergence even for
Raz values up to the order of unity. After this Raz was increased in small steps,
using the solution at each Raz value as the starting guess for the next. The target
value of Raz was 50 000, because Rayleigh numbers are estimated to be up to
tens of thousands in a bench-scale experiment under typical microgravity conditions
(Richardson 1999): also see the Appendix. In addition the value Raz = 50 000 was
thought to be large enough to begin to reveal any boundary layer behaviour that
might arise in the flow and/or temperature fields, which was one of the main objectives
of the study.

It is also possible without loss of generality to consider positive Raz only. This
is because the governing equations have a reflectional symmetry (Grassia & Homsy
1998b, c): if Raz switches sign, then so do u01, w10, p11 and T01, while u10, v00, w01, p00,
p20, p02 and T10 remain unchanged.

3. Numerical results
Now we turn to the numerical results from the program. We shall focus on large

Raz values, because, for small Raz , perturbation expansions are already known to be
adequate (Grassia & Homsy 1998b). We concentrate on temperature profiles to the
exclusion of those of velocity, since analogously to Grassia & Homsy (1998b), we
expect the temperature fields to exhibit a richer physical behaviour. We shall identify
three different regimes of behaviour which we classify according to the shape of the
profile T01(y). The classification scheme is: T01 is nearly constant across the whole
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Figure 2. Temperature profiles T10 for Raz = 50 000, Azx = 1 and Bi = 0.1 (regime I, solid line),
Bi = 2 (regime II, long dashes) and Bi = 1000 (regime III, short dashes). Over most of the fluid
T10 ≈ 1. In regimes I and II there are small departures from this near the top surface, whereas
in regime III there is a large departure at that surface. These departures are a requirement of the
upper thermal boundary condition.

depth (regime I), T01 is confined to a boundary layer near the top surface (regime
II), and T01 is confined to a boundary layer near the top, but returns back to zero
at the top (regime III). Regime selection will depend on the other two parameters
of the problem: the Biot number Bi and the aspect ratio Azx. Our challenge will be
to determine how the magnitude of T01 in each regime scales with Raz , Bi and Azx.
Whenever prominent boundary layer behaviour is evident, we also wish to determine
how the boundary layer thickness scales with these parameters.

Specifically, the investigation is organized as follows. Initially we fix Azx = 1, treating
three different Biot numbers in turn, Bi = 0.1, 2 and 1000, and investigate how the
solutions depend on Raz . Finally we consider the effect of varying Azx.

3.1. The case Bi = 0.1

The field T10 is shown in figure 2 assuming parameters Raz = 50 000, Azx = 1 and
Bi = 0.1. Here T10 is nearly constant with depth, and in fact roughly equal to
unity. Recall that the total lengthwise temperature gradient is made up of an applied
gradient −1 and an advected gradient T10. Thus under a large spanwise acceleration,
the total lengthwise temperature gradient T10 − 1 almost vanishes. At high Raz , the
slot establishes a flow and advects temperature such as to nearly cancel the applied
gradient originally producing the motion. This feature will arise repeatedly in our
study (recall the discussion of § 2.1).

If we look closely at figure 2, still at the Bi = 0.1 curve, we can see that T10 shows
a very slight decrease over a thin layer near the top boundary. Such a decrease can
be shown to be essential to satisfy the upper thermal boundary condition. This is
indirect evidence of boundary layer behaviour, but it is not extremely compelling.
Later we shall discover that, if the temperature decrease is achieved over a region of
thickness δ∗ say, then the actual amount T10 deviates from unity is O(Bi δ∗). Since Bi
and δ∗ are both small here, the decrease we see is likewise small.

It is a valid question to ask how this thickness δ∗ scales with Raz . However,
given that the T10 change near the upper surface is already so small, we were not
confident that we could find a sufficiently unambiguous definition of δ∗ to extract any
meaningful results from our data. The striking qualitative feature of the T10 profile
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Figure 3. Temperature profiles T01 for Raz = 50 000, Azx = 1 and Bi = 0.1 (solid line), Bi = 2 (long
dashes) and Bi = 1000 (short dashes). The respective curves correspond to three different regimes
of behaviour: T01 roughly constant over the layer (regime I), T01 bulging in a boundary layer and
finishing with a large value at the top surface (regime II), and T01 bulging in a boundary layer, but
returning almost to zero at the top surface (regime III).
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Figure 4. Value of T01(0) (regime I) or T01(1) (regimes II and III) vs. Raz for Azx = 1 and Bi = 0.1
(�· ), Bi = 2 (+), Bi = 1000 (�). The following power laws are observed: T01(0) ∝ Ra−0.34

z (regime
I), T01(1) ∝ Ra−0.23

z (regime II) and T01(1) ∝ Ra−0.032
z (regime III). Best-fit lines through the data are

shown.

seems to be the fact that it is very nearly unity, and not its small departure from this
unit value. We shall see that this is in strong contrast to other regions of parameter
space where boundary layer behaviour can be very readily identified.

Figure 3 shows for Bi = 0.1 (still with Raz and Azx as above) that T01 is nearly
constant across the entire layer. This type of T01 profile we shall take as being
characteristic of our first behavioural regime, regime I. We introduce the symbol T01(0)

to denote this uniform T01 value. There is no straightforward way of determining
what level T01(0) should achieve in the large-Raz limit. This is in contrast to T10 which
we have seen saturates at unity for large Raz , so as to cancel the applied temperature
field.

In figure 4 we have plotted how T01(0) depends on Raz (log-log plot). For the
purposes of this figure we have defined T01(0) specifically to be the maximum of T01

measured across the depth. Data are shown for Raz = 1000, 5000, 10 000, 20 000,
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Predicted Numerical

Regime I

Raz dependence, T01(0) Ra
−1/3
z Ra−0.34

z

δ∗ Ra
−1/3
z Layer not prominent

Azx dependence, Azx � 1

T01(0) A
−2/3
zx A−0.71

zx

δ∗ A
1/3
zx Layer not prominent

Azx dependence, Azx � 1

T01(0) A
−4/3
zx A−1.27

zx

δ∗ A
−1/3
zx Layer not prominent

Regime II

Raz dependence, T01(1) Ra
−1/4
z Ra−0.23

z

δ Ra
−1/4
z Ra−0.20

z

Azx dependence, Azx � 1

T01(1) A
−3/4
zx A−0.76

zx

δ A
1/4
zx A0.20

zx

Azx dependence, Azx � 1
T01(1) Independent of Azx Transitional
δ Independent of Azx Transitional

Regime III
Raz dependence, T01(1) Independent of Raz Ra−0.032

z

δ Ra
−1/3
z Ra−0.34

z

Azx dependence, Azx � 1
T01(1) A−1

zx A−0.95
zx

δ A
1/3
zx A0.32

zx

Azx dependence, Azx � 1
T01(1) Independent of Azx Transitional
δ Independent of Azx Transitional

Table 1. Comparison between predicted and numerically observed power-law scalings for spanwise
temperature T01(0) or T01(1), and for layer thicknesses δ∗ or δ. Reasonable agreement is found between
prediction and numerics, except when the boundary layers thicken in regime II (δ increases) either
for Raz of only a few thousand or for large Azx. Numerical data are not reported in all cases.
The boundary layers for regime I were not very prominent: they corresponded to relatively minor
temperature changes, making their thickness difficult to define numerically. Also, starting from
regimes II or III, reducing Azx seemed to cause rapid transition to new regimes, making comparison
with the predicted power-law scalings of the original regime inappropriate.

30 000 and 50 000. A best-fit line drawn through the points indicates

T01(0) ∝ Ra−0.34
z . (3.1)

For the convenience of the reader, this power law and a number of other similar ones
to follow, are summarized in table 1.

Note that, unlike T10, the profile T01 for Bi = 0.1 (figure 3) does not show any
noticeable tendency to decrease near the top boundary. It must in fact do so, since
that is a requirement of the upper thermal boundary condition. Nonetheless the
decrease is evidently too slight, and confined to too small a thickness to be readily
visible. Later we shall see a dramatic contrast in other regions of parameter space
which exhibit a very prominent temperature decrease at the top of the profile.
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3.2. The case Bi = 2

In figure 2 with Bi = 2 we can see that T10 is again unity over most of the depth
of the slot, i.e. the advected field again cancels the applied field. However, there is
a decrease in T10 near y = 1. The overall decrease is still rather small compared to
unity, but nonetheless is much more prominent here than was the case previously for
Bi = 0.1.

The T01 profile shows the most significant changes (see figure 3). It is now essentially
zero over most of the depth of the slot, but bulges out near the top. This is clear
boundary layer behaviour and we classify this type of profile as being regime II.

The maximum value of T01 in the bulge we shall denote by T01(1). The distinct
notation T01(1) in place of T01(0) is intended as a reminder that we are now dealing
with a boundary layer profile, not a constant profile. In figure 3 this maximum
temperature appears to occur very close to y = 1. Nonetheless the upper thermal
boundary condition implies it can never occur precisely at y = 1.

As before we have no a priori simple way of determining how T01(1) should scale
with Raz . In figure 4 we show T01(1) for Bi = 2, Azx = 1 and Raz = 5000, 10 000,
20 000, 30 000 and 50 000. A best-fit line indicates that

T01(1) ∝ Ra−0.23
z . (3.2)

Since we now have a very prominent boundary layer, it is natural to ask how the
boundary layer thickness, denoted δ say, scales with Raz . The distinct notation δ,
instead of δ∗, is intended as a reminder that the thickness is now measured from the
T01 profile, not the T10 profile. Indeed we have chosen to define δ as the distance
measured downward from the top surface at which T01 first falls below the value
0.001T01(1). This choice is rather arbitrary, but the parametric behaviour of δ should
be fairly insensitive to the precise definition, especially if T01 decays exponentially to
zero outside the boundary layer, a model which we shall adopt later. A best-fit line,
based on the same parameter values as in figure 4, suggests

δ ∝ Ra−0.20
z . (3.3)

Note that the δ values observed here are over half the full depth of the slot for
Raz 6 10 000, and are still around a third of the depth for Raz = 50 000. Therefore we
are not strictly in a boundary layer regime, where ideally the boundary layer should
be asymptotically very thin compared to the overall depth. Increasing Raz would be
an effective way of making the boundary layer thinner. We have chosen not to do this
in our numeric computations however, because we are unlikely to encounter Raz any
larger than 50 000 in a typical experiment under microgravity conditions (Richardson
1999).

3.3. The case Bi = 1000

Figure 2 shows the profile for temperature T10 for the case Raz = 50 000, Azx = 1
and Bi = 1000. Once again this is unity over most of the depth of the slot. However,
T10 shows a very dramatic decrease near the top boundary, falling back nearly
to zero. This is a consequence of the upper thermal boundary condition. At this
large Bi value, Bi = 1000, it is so easy for heat to escape from the top boundary
that the surface temperature can remain at a value only slightly different from
ambient.

The corresponding profile for T01 is shown in figure 3. It is again zero for most of
the depth of the slot, and has a bulge in an upper boundary layer. However, the new
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Figure 5. Value of T01(0) (regime I) or T01(1) (regimes II and III) vs. Azx for Azx > 1, Raz = 50 000
and Bi = 0.1 (�· ), Bi = 2 (+), Bi = 1000 (�). The following power-laws are observed: T01(0) ∝ A−0.71

zx

(regime I), T01(1) ∝ A−0.76
zx (regime II) and T01(1) ∝ A−0.95

zx (regime III). Best-fit lines through the data
are shown.

feature is that T01 returns back to nearly zero at the upper surface, which is again
a consequence of the upper thermal boundary condition. We shall call this sort of
behaviour regime III.

Best-fit lines now indicate

T01(1) ∝ Ra−0.032
z , (3.4)

δ ∝ Ra−0.34
z . (3.5)

Observe in particular (see figure 4) that T01(1) is a very weak function of Raz .
We now summarize our numerical results thus far, corresponding to Azx = 1. Three

regimes of behaviour have been identified in the large-Raz limit, each characterized
by the shape of the T01 profile: regime I has T01 nearly constant, regime II has
T01 confined to a boundary layer near the top surface, and regime III has T01

confined to a similar layer, but with T01 returning back to near zero at the top
surface. For completeness, one could envisage a hypothetical fourth regime in which
T01 was constant and non-zero over most of the depth, but returned back to near
zero at the upper surface: we shall discuss the possibility of such behaviour again
shortly.

We have established that varying Bi is one way of selecting each of the three
observed regimes. Our aim in the remainder of this section is to understand the effect
of varying the spanwise-to-lengthwise aspect ratio Azx.

3.4. Varying Azx: Azx > 1

Using the same three Bi values as before, 0.1, 2 and 1000, and keeping Raz = 50 000,
we now consider aspect ratios Azx greater than unity. Aspect ratios less than unity
are considered in the next subsection.

For Bi = 0.1, increasing Azx gives no major change in the shape of the temperature
profiles. In particular the temperature is still more or less uniform over height, with a
value we denote T01(0). However the magnitude of this decreases as Azx increases. In
figure 5 we have plotted T01(0) vs. Azx (log-log scale) for the values Azx = 1, 2, 4, 10,
20 and 50. A best-fit line indicates

T01(0) ∝ A−0.71
zx . (3.6)



A local nonlinear solution in thermoconvective flows 355

10–1

10–3

110–1

Azx

T
01

(0
),

T
01

(1
)

10–2

Figure 6. Value of T01(0) (regime I) or T01(1) (regimes II and III) vs. Azx for Azx 6 1, Raz = 50 000
and Bi = 0.1 (�· ), Bi = 2 (+), Bi = 1000 (�). The following power-law is observed for Bi = 0.1:
T01(0) ∝ A−1.27

zx (regime I) and a best-fit line is shown. The Bi = 2 and Bi = 1000 data enter a
transitional regime as Azx decreases, suggesting it may be inappropriate to fit a power law here.

For Bi = 2, increasing Azx has two effects. First, the temperature bulge T01(1)

decreases. This decrease is shown in figure 5. The best-fit line is

T01(1) ∝ A−0.76
zx . (3.7)

The second effect is that the boundary layers become thicker. The best fit to data
suggests

δ ∝ A0.20
zx . (3.8)

Equation (3.8) was determined based on Azx values 2, 4, 10 and 20. The value Azx = 1
is too small for these asymptotics to apply, while for Azx = 50 the bulge is far too thick
to be considered just a boundary layer. Presumably, for a large enough Azx value,
the bulge will occupy the entire slot depth, meaning that temperature is essentially
uniform with depth. In other words the system will undergo a transition from regime
II to regime I. We consider these transitions in more detail later.

For Bi = 1000 the effects of increasing Azx are similar to the Bi = 2 case. Best-fit
lines (again excluding Azx = 1) are

T01(1) ∝ A−0.95
zx , (3.9)

δ ∝ A0.32
zx . (3.10)

The boundary layer bulge thickens as Azx grows. We envisage that, were it to
continue thickening indefinitely, we could eventually enter the hypothetical fourth
regime discussed above, in which temperature is again nearly uniform with depth, but
then falls back to zero at the top boundary (to satisfy the upper thermal boundary
condition).

3.5. Varying Azx: Azx 6 1

Now we consider cases where Azx is decreased below unity. For Bi = 0.1 and
Raz = 50 000, decreasing Azx gives no qualitative change in the shapes of the tempera-
ture profiles, i.e. T01 is still uniform with depth. Figure 6 shows how T01(0) changes
with Azx for Azx = 1, 0.5, 0.2, 0.1 and 0.05. A best-fit line indicates

T01(0) ∝ A−1.27
zx . (3.11)
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Figure 7. Temperature profiles T01 for Raz = 50 000, Bi = 2, and Azx = 1 (solid line), Azx = 0.5
(long dashes), Azx = 0.2 (short dashes) and Azx = 0.1 (dots). As Azx decreases, T01 changes shape,
from being confined to a boundary layer to roughly constant across the full depth of the fluid.

Now we turn to the case Bi = 2 (still with Raz = 50 000). Profiles of T10 remain
uniform with depth and close to unity as Azx decreases, but the T01 profiles undergo
important changes. Figure 7 shows a series of T01 profiles for Azx = 1, 0.5, 0.2 and 0.1.
The Azx = 1 profile is typical of regime II, with T01 confined to an upper boundary
layer. However for Azx = 0.5, a transition is occurring with a bulge developing at
the lower boundary, in addition to the upper boundary. For Azx = 0.2 the upper and
lower bulges have merged, and T01 is more or less uniform with depth. This is typical
of regime I. If Azx decreases further to 0.1, we also have a typical regime I profile but
with a larger overall temperature.

Thus it would appear that regime II exists only in a window of Azx values, and that
for both very small and very large aspect ratio, transitions to regime I can be induced.
In figure 6 we have plotted the depth maximum T01 value vs. Azx. For Bi = 2 there
is a very clear change in slope between the first two and last two points, which may
indicate a transition between regimes. Given that this transition is occurring, there
seemed little point in determining a best-fit line.

A warning must be issued here. When we decreased Azx down to 0.05 (not shown
in figure 7) we moved to a completely different solution branch. On this new branch
T01 was negative across the full depth of the slot, and was of much smaller magnitude
than the profiles in figure 7. Moreover the T10 profiles showed a major qualitative
change. Rather than T10 being compelled to remain near unity over the depth of the
slot, it was found to vary quite significantly with depth. Despite this, the average of T10

over depth remained near unity. There was no evidence of boundary layer behaviour
in either T10 or T01. Both functions varied smoothly with depth and not abruptly in
thin layers. We have no explanation for this qualitative change in behaviour, nor have
we identified which balances in the governing equations might be responsible. Indeed
our primary objective in this work has been to investigate boundary layer behaviour,
and toward this end we have only proposed models (see the next section) that explain
those solutions exhibiting thin layers.

When we decrease Azx for Bi = 1000 we see similar features to the Bi = 2 case.
In particular T01 profiles, shown in figure 8, develop a bottom-boundary bulge as
Azx decreases from 1 through 0.5 to 0.2. There might be an expectation that the two
bulges would merge at small enough Azx, giving a transition from regime III to our
hypothetical fourth regime: uniform T01 over most of the depth, but falling to zero
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Figure 8. Temperature profiles T01 for Raz = 50 000, Bi = 1000, and Azx = 1 (solid line), Azx = 0.5
(long dashes) and Azx = 0.2 (short dashes). As Azx decreases, T01 changes shape, from being confined
to a boundary layer at the top surface to developing bulges at both top and bottom surfaces.

at the top. The merger is never completed however, because by Azx = 0.1 (not shown
in the figure), the system has jumped to a new solution branch, analogous to what
occurred for Bi = 2. We can offer no explanation of this, and instead the remainder
of the paper will concentrate on trying to account for regimes I, II and III.

4. The boundary layer model
The equations that have been solved numerically are complicated nonlinear differ-

ential equations with many terms. The following questions arise from this study:
Can we understand the solutions at large Raz in simple terms?
Can we identify the governing terms in each of the equations?
Can we explain the behaviour with respect to the parameters Azx and Bi?
The obvious feature of the majority of our solutions is that they involve tempera-

tures and/or temperature gradients confined to thin layers (boundary layers). Thus the
thin-layer concept is a natural starting point in the search for a simple description. In
what follows, we attempt to model this behaviour. Our models are merely approximate,
but they do at least make analytic predictions of how layer thicknesses change with
the governing parameters.

The algebraic manipulations needed to produce the model are quite lengthy, and
may seem daunting given the large number of coupled equations. However, the general
concept is a fairly simple one, and applies quite universally to any boundary layer
theory. We identify the dominant balances in the equations (the choice can be justified
a posteriori if necessary). Different terms may be in balance depending on whether
we are inside or outside a boundary layer. Higher-derivative terms of course tend
to be important within boundary layers, while slowly varying (non-boundary layer)
functions are essentially constant within such layers. Integration across boundary
layers tends to be a safe procedure since it is somewhat insensitive to the precise
functional form of velocity and temperature profiles within these layers. These ideas
are used repeatedly below to produce the power-law scalings we require.

4.1. Regime I

The numerical results identified three regimes (I, II and III) characterized by the
shape of the function T01. It is natural to produce a separate model for each regime.
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In this subsection we address regime I. We shall discover that the lengthwise advected
temperature gradients are maintained by spanwise bulk convection, and that spanwise
temperature gradients are maintained by lengthwise surface convection (i.e. convection
along a boundary layer).

In regime I, T10 = 1 over most of the depth of the cavity, with a very small
departure near the surface, and T01 is nearly constant across the entire layer. Suitable
approximate functions that may be used to model T10 and T01 are therefore

T10 ≈ 1− Bi δ∗ exp

(
y − 1

δ∗

)
(Bi δ∗ � 1), (4.1)

T01 ≈ T01(0), constant. (4.2)

We have used the symbol δ∗, as distinct from δ, here to denote the thickness over
which T10 deviates from unity. This is to remind us that the function T01 does not
exhibit any obvious boundary layer in regime I (a clear contrast with regimes II
and III). It should be noted that equation (4.1) satisfies the upper thermal boundary
condition to a good approximation provided the requirement Bi δ∗ � 1 is satisfied,
i.e. provided the maximal amount that T10 departs from unity is small: if T10 falls by
O(Bi δ∗) over a thickness O(δ∗), then T10,y = −O(Bi) at y = 1, and hence will balance
BiT10 there. Equation (4.2) does not satisfy the upper thermal boundary condition
however. The actual T01 must deviate from T01(0) at the top surface, but this deviation
seems to be negligibly small.

Recall (from § 2.3) that the solution of equation (2.12) is u10 = 0. Moreover for
the temperature field proposed above, T01 = T01(0), the solution of equation (2.15) is
w01 = 0. It follows from equation (2.11) that v00 = 0. Hence equations (2.16)–(2.17)
become

w10T01 = T10,yy, (4.3)

u01(T10 − 1) = T01,yy. (4.4)

Since we have assumed particular temperature fields in equations (4.1)–(4.2) thermal
equations (4.3)–(4.4) are no longer satisfied exactly. However, these equations can be
exploited in order-of-magnitude terms to obtain estimates for the unknowns T01(0)

and δ∗.
We manipulate equations (4.3)–(4.4) into more convenient forms by integrating

them with respect to y from 0 to 1. The left-hand side of (4.3) gives∫ 1

0

w10T01 dy ≈ T01(0)

∫ 1

0

w10 dy (since T01 is constant). (4.5)

The right-hand side gives∫ 1

0

T10,yy dy = T10,y(1)− T10,y(0)

= −BiT10(1) (using the boundary conditions)

= −Bi (to a good order of accuracy if Bi δ∗ � 1). (4.6)

Hence we have

T01(0)

∫ 1

0

w10 dy ≈ −Bi. (4.7)
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An analogous integration for equation (4.4) gives on the left-hand side∫ 1

0

u01(T10 − 1) dy ≈ u01(1)

∫ 1

0

(T10 − 1) dy

≈ −u01(1)Bi δ2
∗ , (4.8)

where we have made use of equation (4.1) and we are assuming δ∗ is small. Note
that the slowly varying function u01 has been taken out of the integral here. The
right-hand side gives∫ 1

0

T01,yy dy = T01,y(1)− T01,y(0)

= −BiT01(1) (using the boundary conditions)

= −BiT01(0) (since T01 is constant). (4.9)

Hence we have

−u01(1)Bi δ2
∗ ≈ −BiT01(0) ⇒ T01(0) ≈ u01(1)δ2

∗ . (4.10)

In the above derivation, the steps where we have replaced T01,y(1) by −BiT01(0)

warrant some explanation, since it is obvious that in our model equation (4.2) the
gradient T01,y vanishes everywhere. The actual T01,y must deviate from zero extremely
near y = 1, and must roughly equal −BiT01(0) there (upper thermal boundary
condition).

Equations (4.7) and (4.10) are a pair of simultaneous equations for T01(0) and
δ∗. They both express the balance between horizontal convection (bulk spanwise
convection across the full depth of the slot in the case of equation (4.7) and lengthwise
convection confined to a surface boundary layer in equation (4.10)) and vertical
conduction. The vertical conduction is associated with elevated slot temperatures, as
the surface heat escape is governed by the upper thermal boundary condition (and
hence by the Biot number). Differing amounts of convection at different x and z values
lead to differing amounts of conduction, and hence different temperature elevations:
thus x and z gradients of advected temperature are maintained. Equations (4.7) and

(4.10) may be solved given
∫ 1

0
w10 dy and u01(1). The derivation of

∫ 1

0
w10 dy and

u01(1) will now be described and the consequent power laws for T01(0) and δ∗ appear
immediately after that.

4.1.1. Calculation of
∫ 1

0
w10 dy and u01(1)

The quantities
∫ 1

0
w10 dy and u01(1) may be found via equations (2.13), (2.14) and

(2.20). Solving (2.13) is straightforward as p11 in the equation is just a constant.
Solving for w10 is slightly more complicated. Equation (2.14) becomes

w10,yy = p11 − Raz(T10 − 1). (4.11)

The second term on the right-hand side is confined to a boundary layer of thickness
O(δ∗) at the top surface, and we anticipate that it completely dominates p11 there. We
integrate equation (4.11) across the layer to determine w10,y at a point immediately
below the layer (we denote this point by y = 1−). We find using equation (4.1)

w10,y(1
−) = −Raz Bi δ2

∗ . (4.12)
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We can now solve w10,yy = p11 which applies outside the boundary layer and
substitute the expressions for u01 and w10 into (2.20), and then solve to obtain

u01(1) =
3

4

Raz Bi δ
2∗

(1 + A2
zx)
, (4.13)

∫ 1

0

w10 dy = −Raz Bi δ
2∗ A2

zx

2(1 + A2
zx)

, (4.14)

which are the quantities we require.

4.1.2. Prediction of power-law behaviour of T01(0) and δ∗
Substituting results (4.13) and (4.14) into equations (4.7) and (4.10), solving the last

two equations simultaneously, and discarding all O(1) factors (we are interested in
extracting power laws only), we deduce

T01(0) ∝ Ra−1/3
z Bi1/3

(1 + A2
zx)

1/3

A
4/3
zx

, (4.15)

δ∗ ∝ Ra−1/3
z Bi−1/6

(
1 + A2

zx

Azx

)1/3

. (4.16)

These predicted power laws (and others to follow) are tabulated alongside the nu-
merically observed ones in table 1.

4.2. Regime II

Now we turn to regime II. As before T10 = 1 over most of the depth of the cavity,
with a small departure near the surface. However, now T01 = 0 over the lower part
of the cavity with a significant bulge near the surface. The maximum value of T01 is
denoted by T01(1), and this occurs extremely close to the top surface. The thickness
of the region where T10 deviates from unity and the thickness of the bulge in T01 are
roughly the same. Hence we may use the following models for T10 and T01:

T10 ≈ 1− Bi δ exp

(
y − 1

δ

)
(Bi δ � 1), (4.17)

T01 ≈ T01(1) exp

(
y − 1

δ

)
. (4.18)

Again (4.17) satisfies the upper thermal boundary condition (provided Bi δ � 1),
while (4.18) does not. However, it appears that the deviation away from (4.18) is
negligible and confined extremely close to the top boundary.

Physically we shall see that the mechanism producing the field T10 is broadly
similar to that in regime I, but the mechanism for the field T01 is quite different, being
convectively controlled. As before, thermal equations (2.16)–(2.17) are no longer
satisfied in detail, but we still wish to use them (integrated from 0 to 1) to obtain the
scaling laws for the unknowns T01(1) and δ. After some substitutions from continuity
equation (2.11) and from boundary and integral conditions (2.18)–(2.21), we deduce∫ 1

0

w01(T10 − 1) dy +

∫ 1

0

w10T01 dy = T10,y(1), (4.19)

∫ 1

0

u01(T10 − 1) dy + 2

∫ 1

0

w01T01 dy = T01,y(1). (4.20)
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Taking the slowly varying functions out of the integrands on the left-hand side,
applying the thermal boundary conditions on the right-hand side, substituting from
(4.17)–(4.18) and assuming δ is small, we have

w01(1)(−Bi δ2) + w10(1)T01(1)δ ≈ −Bi, (4.21)

u01(1)(−Bi δ2) + 2w01(1)T01(1)δ ≈ −BiT01(1). (4.22)

A numerical investigation was carried out to determine the relative importance of
the terms in equations (4.21) and (4.22). The investigation showed that the two terms
on the left-hand side of (4.21) have the same sign and the same order of magnitude.
It also showed that the two terms on the left-hand side of (4.22) have opposite sign
and that the term on the right-hand side is smaller in magnitude. Therefore we may
assume a balance between the terms on the left-hand side of (4.22). Hence we obtain
in order-of-magnitude terms

2w10(1)T01(1)δ ≈ −Bi, (4.23)

2w01(1)T01(1) ≈ u01(1)Bi δ. (4.24)

The difference between equation (4.23) here and equation (4.7) (regime I) is due solely
to the convection now being confined to a boundary layer instead of being spread over
the full depth of the slot. However, equation (4.24) is physically quite different from
equation (4.10) (regime I): it expresses a balance between lengthwise and spanwise
convection, not a conductive–convective balance which was the case before.

Equations (4.23) and (4.24) are a pair of equations for T01(1) and δ, given values
for w01(1), w10(1) and u01(1). The formula for u01(1) given in § 4.1.1 still applies here.
A formula for w10(1) can also be obtained via the arguments of that subsection. We
find

w10(1) = − ( 1
4

+ A2
zx)

(1 + A2
zx)
Raz Bi δ

2. (4.25)

It remains to determine w01(1) and then the resulting power-law scalings for T01(1)

and δ can be determined.

4.2.1. Calculation of w01(1)

Rearranging equation (2.15) gives

w01,yy = p02 − RazT01. (4.26)

The term −RazT01 is confined to a boundary layer at the top surface, and is expected
to be the dominant term there. Then, using arguments analogous to those of § 4.1.1
and applying return flow condition (2.21), we can show

w01(1) = 1
4
RazT01(1)δ. (4.27)

4.2.2. Prediction of power-law behaviour of T01(1) and δ

Substituting the results from (4.13), (4.25) and (4.27) into equations (4.23) and
(4.24), and also noting that the ratio ( 1

4
+ A2

zx)/(1 + A2
zx) in equation (4.25) remains

O(1) for all Azx, we arrive at the following power laws for regime II:

T01(1) ∝ Ra−1/4
z Bi3/4(1 + A2

zx)
−3/8, (4.28)

δ ∝ Ra−1/4
z Bi−1/4(1 + A2

zx)
1/8. (4.29)
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With these scalings we can show that neglect of the right-hand side of (4.22) is
self-consistent provided Bi δ � 1.

4.3. Regime III

Next we turn to the case of regime III. Here T10 = 1 in the lower part of the cavity
but T10 ≈ 0 at the surface of the fluid. The value of T01 is approximately zero in the
lower part of the cavity but in the boundary layer there is a bulge in T01, with a
return almost to zero at the surface. Suitable models for T10 and T01 are therefore

T10 ≈ 1− exp

(
y − 1

δ

)
, (4.30)

T01 ≈ T01(1)

(
1− y
δ

)
exp

(
y − 1

δ

)
exp(1). (4.31)

Here T01(1) represents the maximum of T01 within the bulge, and exp(1) is a factor
included for convenience because the bulge is maximal at y = 1− δ.

Proceeding as in regime II we find that equations (4.19)–(4.20) still apply. However,
in place of equations (4.21)–(4.22), we find

−w01(1)δ + w10(1)δT01(1) exp(1) ≈ −1

δ
, (4.32)

−u01(1)δ + 2w01(1)δT01(1) exp(1) ≈ −T01(1) exp(1)

δ
. (4.33)

The last two equations may be solved for T01(1) and δ given values for w01(1),
w10(1) and u01(1) from (2.13)–(2.15). In each of equations (4.32) and (4.33), the two
left-hand-side terms can be shown to have the same magnitude and sign and so,
in the interests of an order-of-magnitude theory, the terms involving w01(1) may be
neglected. This is a result which may also be justified a posteriori. We are thus left
with conductive–convective balances in both cases,

w10(1)δT01(1) exp(1) ≈ −1

δ
, (4.34)

−u01(1)δ ≈ −T01(1) exp(1)

δ
⇒ T01(1) ≈ u01(1)δ2

exp(1)
. (4.35)

The difference between equation (4.34) and equation (4.23) (regime II) is explained by
the changing amount of vertical conduction in the T10 profile, i.e. T10 now returning
nearly to zero at the surface for large Bi, a requirement of the upper thermal
boundary condition. However, equation (4.35) is quite analogous to equation (4.10)
(regime I).

Proceeding with our analysis, equations (2.13)–(2.14) may be solved using similar
arguments to those of the previous sections, giving ultimately

u01(1) =
3

4

1

(1 + A2
zx)
Razδ, (4.36)

w01(1) = −
(

1
4

+ A2
zx

1 + A2
zx

)
Razδ, (4.37)

instead of equations (4.13) and (4.25).
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Substituting into equations (4.34)–(4.35), rearranging and discarding all O(1) factors,
we deduce

T01(1) ∝ (1 + A2
zx)
−1/2, independent of Raz, (4.38)

δ ∝ Ra−1/3
z (1 + A2

zx)
1/6. (4.39)

4.4. Hypothetical fourth regime

It is possible to envisage a hypothetical fourth regime in which T10 and T01 have
respective values 1 and T01(0) away from the top boundary, and where these fall back
to near zero over some thickness, δ∗ say, at the top boundary. Numerical evidence for
this regime is not overwhelming, but there is some suggestion it could exist for large
enough Bi and extreme values of aspect ratio Azx. Suitable models are

T10 ≈ 1− exp

(
y − 1

δ∗

)
, (4.40)

T01 ≈ T01(0)

(
1− exp

(
y − 1

δ∗

))
. (4.41)

Analogous to equations (4.7) and (4.10) we can derive

T01(0)

∫ 1

0

w10(y) dy ≈ − 1

δ∗
, (4.42)

T01(0) ≈ u01(1)δ2
∗ , (4.43)

and analogous to equations (4.13)–(4.14) we can derive

u01(1) =
3

4

Razδ∗
(1 + A2

zx)
, (4.44)

∫ 1

0

w10(y) dy = − Razδ∗A2
zx

2(1 + A2
zx)
. (4.45)

Solving the above we deduce

T01(0) ∝ Ra−1/5
z

(1 + A2
zx)

1/5

A
6/5
zx

, (4.46)

δ∗ ∝ Ra−2/5
z

(1 + A2
zx)

2/5

A
2/5
zx

. (4.47)

The physics of equations (4.42)–(4.43) is little different from that of equations (4.34)–
(4.35) (regime III), except that in equation (4.42) the convective effect is now spread
over the entire depth of the slot, not confined in a surface boundary layer.

5. Discussion
It is appropriate to ask how well the predictions of the model (§ 4) agree with the

numerical data (§ 3). The extent of agreement is summarized in table 1. As we can
see, in almost all cases for which we have data, agreement between the models and
the numerical results is good. The only exceptions are the predictions of boundary
layer thickness δ in regime II. This disagreement may be due to our slightly arbitrary
way of defining δ, or it may just be due to the fact that the boundary layers are
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becoming very thick either for Raz of only a few thousand or in the large-Azx limit.
Models which assume asymptotically thin boundary layers (δ � 1) are therefore
inappropriate. Additionally the model for regime II assumes Bi δ � 1, but with
Bi = 2 in our data this condition is certainly not satisfied. If we decided to determine
a best-fit line based solely on those points with Raz > 20 000, i.e. based on those
points for which Bi δ is less than unity in the numerics, we would obtain rather better
agreement with our prediction.

A significant achievement would be to understand which parameter value gives
solutions in which regime, and how to induce transitions between the regimes. The
transition between regimes II and III is quite straightforward, and is driven by the
need to continue satisfying the upper thermal boundary condition as Bi δ ranges
from values much less than one to values much greater than one. Decreasing Bi will
therefore shift the slot from regime III to regime II. It is also possible in principle to
drive the same transition by increasing Raz , since that will make the boundary layer
thinner (smaller δ). However, this is unlikely to be very successful, because δ is quite

a weak function of Raz (proportional to Ra
−1/4
z in regime II, and Ra

−1/3
z in regime

III). Indeed we have seen in our numerical data that the boundary layers remain
quite thick even for Raz = 50 000, and under microgravity conditions we are unlikely
to encounter Rayleigh numbers much bigger than that (Richardson 1999).

The transition between regime I and regime II is less obvious. It is associated with
the velocity field w01 becoming prominent in regime II, allowing two convective terms
to balance (one lengthwise, one spanwise) in the equation for T01, as opposed to a
conductive–convective balance which is typical of regime I (see §§ 4.1–4.2).

A simple heuristic criterion for locating the point of transition between these two
regimes can be derived as follows. Think of a general T01 profile as being composed
of a uniform background value T01(0) and a boundary layer bulge of temperature
T01(1) over and above the background. The slot is in regime I or regime II according
to whether the background temperature is larger or smaller than the bulge. Thus our
criterion for transition between these regimes is

T01(0) ≈ T01(1), (5.1)

with the required formulae given in equations (4.15) and (4.28). We have chosen to
base our transition criterion on the model predicted temperatures T01(0) and T01(1) and
not on some other system property (like δ∗ or δ), because the temperature predictions
seemed to show rather better agreement with the numerical results.

As T01(0) ∝ Ra
−1/3
z and T01(1) ∝ Ra

−1/4
z , we deduce that for large enough Rayleigh

number, regime II should always dominate. However, for Raz up to 50 000, the
difference between Ra

−1/3
z and Ra

−1/4
z will not be very great. Hence it is instructive to

determine how T01(0) and T01(1) depend on the other parameters of the slot, Bi and
Azx.

Consider first O(1) values of Azx. As T01(0) ∝ Bi1/3 and T01(1) ∝ Bi3/4, it is apparent
that regime I will be favoured at small Bi. Indeed we can determine from equation
(5.1) that the transition between the two regimes will occur when

Bi = O(Ra−1/5
z ), (5.2)

which is certainly consistent with our numerical data. Incidentally the Bi� 1 asymp-
totic behaviour of the slot can now be extracted from equations (4.2)–(4.3), provided
Raz � 1 is also large enough to ensure the regime I scaling applies.

Now consider Azx values very different from unity. If Azx � 1, the respective
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behaviours of T01(0) and T01(1) are A
−2/3
zx and A

−3/4
zx , making regime I dominant. If

Azx � 1, the respective behaviours are T01(0) ∝ A
−4/3
zx and T01(1) independent of Azx.

Again regime I is dominant. Regime II will only exist in a window of Azx values

O((RazBi
5)−1/16) 6 Azx 6 O(RazBi

5). (5.3)

Note that RazBi
5 must be greater than unity for this window to exist.

Some comments are pertinent. The transition will be quite gradual for Azx in
excess of unity, i.e. exceedingly large Azx values need be to reached before seeing any
transition. However, it will be more abrupt for Azx less than unity, since (RazBi

5)−1/16

will never be extremely small. This is in agreement with our numerical results. Our
numerics suggest that transition occurs by gradual thickening of the boundary layer
for Azx > 1, but by development of an additional bulge at the lower boundary which
grows and merges with the upper bulge when Azx 6 1. We also recall that for very
small Azx values, the slot system seems to jump to a completely different solution
branch. We can offer no explanation of this last phenomenon.

We would also like to understand how regime III might undergo transition, say into
the hypothetical fourth regime. The physical difference between these two regimes is
due to the changing nature of one of the convective terms in the T10 equation (see
§§ 4.3–4.4): convection is confined near the upper surface of the slot in one case, but
spread over the entire slot depth in the other. We again employ the criterion (5.1),
taking the required formulae from (4.38) and (4.46): regime III is expected to be
dominant for large Raz . Moreover, by comparing the expected Azx dependences, we
can predict that regime III should only be observed in a window of values

O(Ra−1/6
z ) 6 Azx 6 O(Raz), (5.4)

with the hypothetical fourth regime on either side of this window. Based on the above
discussion and our numerical results, many analogies are predicted with the regime
II to regime I transition. For instance, the Azx � 1 transition will be gradual, and
will proceed by boundary layer thickening. The Azx � 1 transition should be more
abrupt, and seems to involve a bottom boundary bulge. Again there seems to be a
jump to an entirely different solution branch for very small Azx, and we can offer no
explanation for this.

6. Conclusions
In summary, for a buoyant slot subject to low-frequency, spanwise g-jitter, with a

large instantaneous Rayleigh number Raz � 1, we have identified numerically three
clear parameter regimes, along with a hypothetical fourth regime, for which there
is some limited evidence. The different regimes are selected according to the values
of the Biot number Bi and an aspect ratio parameter Azx, and are characterized
by differently shaped temperature profiles. In order to account for the numerical
observations, some models have been proposed which identify the dominant physical
balances in the equations. The models broadly reproduce the numerically observed
scaling behaviour in each regime, and seem to predict the correct transitions between
regimes. Many of our models involve boundary layers, but these do not necessarily

obey the Ra
−1/4
z scaling for layer thickness which is conventional in free-convection

problems. The reason is that the conventional picture relies on a fixed temperature
change applied across the layer, but we have a much more complicated system with
multiple flow and advected temperature fields mutually interacting.

D. Richardson acknowledges financial support from the EPSRC.
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Appendix
Here we give the relationship between dimensionless and dimensional variables. In

dimensional variables we envisage a slot of depth d, containing a fluid of density
ρ, kinematic viscosity ν, thermal diffusivity κ, thermal conductivity k, and thermal
expansion coefficient α. There is a temperature gradient applied along the slot, such
that over each distance d the temperature falls by ∆T . The top surface of the slot is
characterized by a heat transfer coefficient h. The applied spanwise acceleration is gz .
Lengths are made dimensionless on the scale d, velocities on the scale κ/d, pressures
on the scale ρνκ/d2, and temperatures on the scale ∆T . The Rayleigh, Prandtl and
Biot numbers are defined as

Raz =
α∆Tgzd

3

νκ
, P r =

ν

κ
, Bi =

hd

k
.

We have stated a number of times in the text that Raz = 50 000 is a typical upper
limit (Richardson 1999) for bench-scale experiments under microgravity conditions.
This is based on plausible values d = 0.1 m and ∆T = 10 K, along with a jitter
strength gz = 3.5× 10−3 m s−2 (Thompson et al. 1996), and properties of water, α =
2× 10−4 K−1, ν = 10−6 m2 s−1, and κ = 1.4× 10−7 m2 s−1 (Batchelor 1967).
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